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1 MOTIVATION: CONTINUITY OF𝜓 ′

Proposition A: Let𝑥𝑥𝑥 be the query point and let𝑑𝑠1 (𝑥𝑥𝑥), 𝑑𝑠2 (𝑥𝑥𝑥), · · · , 𝑑𝑠𝑛 (𝑥𝑥𝑥) be the sorted LSE distance
function defined in Section 4.2. Assume the user-defined potential𝜓 (𝑥𝑥𝑥) and 𝑐𝑝 (𝑥𝑥𝑥) are at least 𝐶1

differentiable. If 𝑑0 (𝑥𝑥𝑥) = min{𝑑𝑠2 (𝑥𝑥𝑥), 𝑑0}, then

Multiplicative Ramping: 𝜓 ′ (𝑥𝑥𝑥) = 𝛼 (𝑥𝑥𝑥)𝜓 (𝑥𝑥𝑥) + (1 − 𝛼 (𝑥𝑥𝑥))𝜓𝑔 (𝑥𝑥𝑥), (1)

and
Additive Ramping: 𝜓 ′ (𝑥𝑥𝑥) = 𝜓 (𝑥𝑥𝑥) + (𝜓𝑔 (𝑥𝑥𝑥) −𝜓 (𝑐𝑝 (𝑥𝑥𝑥))) (1 − 𝛼 (𝑥𝑥𝑥)) (2)

are both continuous, where

𝛼 (𝑥𝑥𝑥) = 𝑟𝑎𝑚𝑝

(
𝑑
1 (𝑥𝑥𝑥)

𝑑0 (𝑥𝑥𝑥)

)
, and 𝑟𝑎𝑚𝑝 (𝑟 ) =


1 if 𝑟 ≥ 1
15
8 𝑟 −

10
8 𝑟

3 + 3
8𝑟

5 if −1 < 𝑟 < 1
−1 if 𝑟 ≤ −1

.

Proof. We first make the following five observations:
Observation 1: Directly following their definitions, we know 𝑟𝑎𝑚𝑝 (𝑟 ) ∈ 𝐶1 and

𝑑 (𝑥𝑥𝑥) ≤ 𝑑
1 (𝑥𝑥𝑥) =

∑𝑛
𝑖=1 𝑑𝑖 (𝑥𝑥𝑥) exp(−𝑏𝑑𝑖 (𝑥𝑥𝑥))∑𝑛

𝑖=1 exp(−𝑏𝑑𝑖 (𝑥𝑥𝑥))
=

∑𝑛
𝑖=1 𝑑𝑠𝑖 (𝑥𝑥𝑥) exp(−𝑏𝑑𝑠𝑖 (𝑥𝑥𝑥))∑𝑛

𝑖=1 exp(−𝑏𝑑𝑠𝑖 (𝑥𝑥𝑥))
∈ 𝐶1 .

Observation 2: For all 𝑥𝑥𝑥 located on the equidistant curve of the closest two obstacles (i.e., when
𝑑 (𝑥𝑥𝑥) = 𝑑𝑠1 (𝑥𝑥𝑥) = 𝑑𝑠2 (𝑥𝑥𝑥)), we have 1 − 𝛼 (𝑥𝑥𝑥) = 0.
Proof of observation 2: Since 𝑑𝑠1 (𝑥𝑥𝑥) ≤ 𝑑𝑠2 (𝑥𝑥𝑥), there are only three possible cases regarding the order
of 𝑑𝑠1 (𝑥𝑥𝑥), 𝑑𝑠2 (𝑥𝑥𝑥) and 𝑑0. We analyze them one by one.
Case 1: If 𝑑0 ≤ 𝑑𝑠1 (𝑥𝑥𝑥) ≤ 𝑑𝑠2 (𝑥𝑥𝑥), then 𝑑0 (𝑥𝑥𝑥) = min{𝑑𝑠2 (𝑥𝑥𝑥), 𝑑0} = 𝑑0 and 𝑑

1 (𝑥𝑥𝑥 )
𝑑0 (𝑥𝑥𝑥 ) ≥ 𝑑 (𝑥𝑥𝑥 )

𝑑0
≥ 1.

Case 2: If 𝑑𝑠1 (𝑥𝑥𝑥) ≤ 𝑑0 ≤ 𝑑𝑠2 (𝑥𝑥𝑥), then 𝑑0 (𝑥𝑥𝑥) = min{𝑑𝑠2 (𝑥𝑥𝑥), 𝑑0} = 𝑑0. When 𝑑𝑠1 (𝑥𝑥𝑥) = 𝑑𝑠2 (𝑥𝑥𝑥), we must
have 𝑑𝑠1 (𝑥𝑥𝑥) = 𝑑0 = 𝑑𝑠2 (𝑥𝑥𝑥). So,

𝑑
1 (𝑥𝑥𝑥 )

𝑑0 (𝑥𝑥𝑥 ) ≥ 𝑑 (𝑥𝑥𝑥 )
𝑑0

=
𝑑 (𝑥𝑥𝑥 )
𝑑𝑠2 (𝑥𝑥𝑥 )

≥ 1.

Case 3: If 𝑑𝑠1 (𝑥𝑥𝑥) ≤ 𝑑𝑠2 (𝑥𝑥𝑥) ≤ 𝑑0, then 𝑑0 (𝑥𝑥𝑥) = min{𝑑𝑠2 (𝑥𝑥𝑥), 𝑑0} = 𝑑𝑠2 (𝑥𝑥𝑥). When 𝑑𝑠1 (𝑥𝑥𝑥) = 𝑑𝑠2 (𝑥𝑥𝑥), we

Authors’ addresses: Xinwen Ding, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada;
Christopher Batty, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2577-6193/2023/5-ART $15.00
https://doi.org/10.1145/3585511

Proc. ACM Comput. Graph. Interact. Tech., Vol. 6, No. 1, Article . Publication date: May 2023.

https://doi.org/10.1145/3585511


I3D’23, May 03–05, 2023, Bellevue, WA

have 𝑑
1 (𝑥𝑥𝑥 )

𝑑0 (𝑥𝑥𝑥 ) ≥ 𝑑 (𝑥𝑥𝑥 )
𝑑𝑠2 (𝑥𝑥𝑥 )

= 1.

Notice that, in all three cases, we showed that 𝑑
1 (𝑥𝑥𝑥 )

𝑑0 (𝑥𝑥𝑥 ) ≥ 1 when 𝑑𝑠1 (𝑥𝑥𝑥) = 𝑑𝑠2 (𝑥𝑥𝑥). So,

𝛼 (𝑥𝑥𝑥) = 𝑟𝑎𝑚𝑝

(
𝑑
1 (𝑥𝑥𝑥)

𝑑0 (𝑥𝑥𝑥)

)
= 1 =⇒ 1 − 𝛼 (𝑥𝑥𝑥) = 0.

□
Observation 3: Eq. 1 and 2 are both of the general form

𝜓 ′ (𝑥𝑥𝑥) = 𝜓 (𝑥𝑥𝑥) + (𝜓𝑔 (𝑥𝑥𝑥) −𝜓 (𝑚𝑚𝑚(𝑥𝑥𝑥))) (1 − 𝛼 (𝑥𝑥𝑥)). (3)

We can rewrite Eq. 1 as

𝜓 ′ (𝑥𝑥𝑥) = 𝛼 (𝑥𝑥𝑥)𝜓 (𝑥𝑥𝑥) + (1 − 𝛼 (𝑥𝑥𝑥))𝜓𝑔 (𝑥𝑥𝑥) = 𝜓 (𝑥𝑥𝑥) + (𝜓𝑔 (𝑥𝑥𝑥) −𝜓 (𝑥𝑥𝑥)) (1 − 𝛼 (𝑥𝑥𝑥)),

where𝑚𝑚𝑚(𝑥𝑥𝑥) = 𝑥𝑥𝑥 . It is clear that𝑚𝑚𝑚(𝑥𝑥𝑥) = 𝑐𝑝 (𝑥𝑥𝑥) for Eq. 2.
Observation 4: 𝑑𝑠2 (𝑥𝑥𝑥) is a strictly positive 𝐶0 function. It is not differentiable over D wherever the
second closest object to 𝑥𝑥𝑥 changes. It is strictly positive since 𝑥𝑥𝑥 is in the exterior of all objects.
Therefore, 𝑑0 (𝑥𝑥𝑥) is a strictly positive 𝐶0 function.
Observation 5: The user defined potential evaluated at the geometric center of the closest object
to 𝑥𝑥𝑥 , i.e., 𝜓𝑔 (𝑥𝑥𝑥), is a Heaviside step function. It is discontinuous wherever the closest object to 𝑥𝑥𝑥
changes. That is, all discontinuities of𝜓𝑔 (𝑥𝑥𝑥) locate on the equidistant curve between the closest
and second closest object to 𝑥𝑥𝑥 , where 𝑑𝑠1 (𝑥𝑥𝑥) = 𝑑𝑠2 (𝑥𝑥𝑥). Moreover, as all the objects are defined in a
finite and bounded domain D, then𝜓𝑔 is bounded. Therefore, ∃𝑀 ≥ 0 such that |𝜓𝑔 | ≤ 𝑀 .
Under the assumption that𝜓 (𝑥𝑥𝑥),𝑚𝑚𝑚(𝑥𝑥𝑥) ∈ 𝐶1, and relying on the preceding Observations, it suffices
to show that Eq. 3 is continuous at all 𝑥𝑥𝑥 that satisfy 𝑑𝑠1 (𝑥𝑥𝑥) = 𝑑𝑠2 (𝑥𝑥𝑥).
Take arbitrary 𝜖 > 0. Set 𝜖0 = 1

3𝜖 . Let 𝑥0𝑥0𝑥0 be any query point such that 𝑑𝑠1 (𝑥0𝑥0𝑥0) = 𝑑𝑠2 (𝑥0𝑥0𝑥0).
Since𝜓 (𝑥𝑥𝑥) ∈ 𝐶1, then ∀𝜖0 > 0, ∃𝛿1 > 0 such that

|𝑥𝑥𝑥 − 𝑥0𝑥0𝑥0 | < 𝛿1 =⇒ |𝜓 (𝑥𝑥𝑥) −𝜓 (𝑥0𝑥0𝑥0) | < 𝜖0. (4)

By Observation 1 and Observation 4, we know that 𝑑
1 (𝑥𝑥𝑥 )

𝑑0 (𝑥𝑥𝑥 ) is continuous, and so is 𝑟𝑎𝑚𝑝 ( 𝑑
1 (𝑥𝑥𝑥 )

𝑑0 (𝑥𝑥𝑥 ) ). By

construction, 𝛼 (𝑥𝑥𝑥) = 𝑟𝑎𝑚𝑝 ( 𝑑
1 (𝑥𝑥𝑥 )

𝑑0 (𝑥𝑥𝑥 ) ), and 1 − 𝛼 (𝑥𝑥𝑥) are both continuous. Then ∀𝜖0
𝑀

> 0, ∃𝛿2 > 0 such
that

|𝑥𝑥𝑥 − 𝑥0𝑥0𝑥0 | < 𝛿2 =⇒ |(1 − 𝛼 (𝑥𝑥𝑥)) − (�����:0
1 − 𝛼 (𝑥0𝑥0𝑥0)︸      ︷︷      ︸

by Observation 2

| = |1 − 𝛼 (𝑥𝑥𝑥) | < 𝜖0
𝑀

. (5)

By assumption, as𝜓 (𝑥𝑥𝑥),𝑚𝑚𝑚(𝑥𝑥𝑥) ∈ 𝐶1, then𝜓 (𝑚𝑚𝑚(𝑥𝑥𝑥)) (1−𝛼 (𝑥𝑥𝑥)) ∈ 𝐶1. Then ∀𝜖0 > 0, ∃𝛿2 > 0 such that

|𝑥𝑥𝑥 − 𝑥0𝑥0𝑥0 | < 𝛿3 =⇒ |𝜓 (𝑚𝑚𝑚(𝑥𝑥𝑥)) (1 − 𝛼 (𝑥𝑥𝑥)) −𝜓 (𝑚𝑚𝑚(𝑥0𝑥0𝑥0))������:0
(1 − 𝛼 (𝑥0𝑥0𝑥0))︸        ︷︷        ︸
by Observation 2

|

= |𝜓 (𝑚𝑚𝑚(𝑥𝑥𝑥)) (1 − 𝛼 (𝑥𝑥𝑥)) | < 𝜖0. (6)

2
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Take 𝛿 = min{𝛿1, 𝛿2, 𝛿3}, and assume |𝑥𝑥𝑥 − 𝑥0𝑥0𝑥0 | < 𝛿 , then
|𝜓 ′ (𝑥𝑥𝑥) −𝜓 ′ (𝑥0𝑥0𝑥0) |

= |𝜓 (𝑥𝑥𝑥) + (𝜓𝑔 (𝑥𝑥𝑥) −𝜓 (𝑚𝑚𝑚(𝑥𝑥𝑥))) (1 − 𝛼 (𝑥𝑥𝑥)) −𝜓 (𝑥0𝑥0𝑥0) − (𝜓𝑔 (𝑥0𝑥0𝑥0) −𝜓 (𝑚𝑚𝑚(𝑥0𝑥0𝑥0)))������:0
(1 − 𝛼 (𝑥0𝑥0𝑥0))︸        ︷︷        ︸
by Observation 2

|

= |𝜓 (𝑥𝑥𝑥) + (𝜓𝑔 (𝑥𝑥𝑥) −𝜓 (𝑚𝑚𝑚(𝑥𝑥𝑥))) (1 − 𝛼 (𝑥𝑥𝑥)) −𝜓 (𝑥0𝑥0𝑥0) |
≤ |𝜓 (𝑥𝑥𝑥) −𝜓 (𝑥0𝑥0𝑥0) | + |𝜓𝑔 (𝑥𝑥𝑥) | |1 − 𝛼 (𝑥𝑥𝑥) | + |𝜓 (𝑚𝑚𝑚(𝑥𝑥𝑥)) (1 − 𝛼 (𝑥𝑥𝑥) |

≤ 𝜖0 +𝑀
𝜖0
𝑀

+ 𝜖0 by Eq. 4, 5, 6, and Observation 5

= 3𝜖0 = 𝜖.

Therefore, we showed that any𝜓 ′ (𝑥𝑥𝑥) having the form of Eq. 3 is continuous. Hence, by Observation
3, Eq. 1 and 2 are both continuous given that𝜓 (𝑥𝑥𝑥),𝑚𝑚𝑚(𝑥𝑥𝑥) ∈ 𝐶1. □

2 ALGORITHM 1: DIFFERENTIABILITY OF𝜓 ′

Proposition B: Let𝑥𝑥𝑥 be the query point and let 𝑑𝑠1 (𝑥𝑥𝑥), 𝑑𝑠2 (𝑥𝑥𝑥), · · · , 𝑑𝑠𝑛 (𝑥𝑥𝑥) be the sorted LSE distance
functions defined in Section 4.2. Assume the user-defined potential𝜓 (𝑥𝑥𝑥) and 𝑐𝑝 (𝑥𝑥𝑥) are at least 𝐶1

differentiable. If 𝑑0 (𝑥𝑥𝑥) is approximated using the 𝐶1 construction in Algorithm 1, then
Eq. 1: 𝜓 ′ (𝑥𝑥𝑥) = 𝛼 (𝑥𝑥𝑥)𝜓 (𝑥𝑥𝑥) + (1 − 𝛼 (𝑥𝑥𝑥))𝜓𝑔 (𝑥𝑥𝑥), and
Eq. 2: 𝜓 ′ (𝑥𝑥𝑥) = 𝜓 (𝑥𝑥𝑥) + (𝜓𝑔 (𝑥𝑥𝑥) −𝜓 (𝑐𝑝 (𝑥𝑥𝑥))) (1 − 𝛼 (𝑥𝑥𝑥))

are both continuously differentiable, where

𝛼 (𝑥𝑥𝑥) = 𝑟𝑎𝑚𝑝

(
𝑑
1 (𝑥𝑥𝑥)

𝑑0 (𝑥𝑥𝑥)

)
, and 𝑟𝑎𝑚𝑝 (𝑟 ) =


1 if 𝑟 ≥ 1
15
8 𝑟 −

10
8 𝑟

3 + 3
8𝑟

5 if −1 < 𝑟 < 1
−1 if 𝑟 ≤ −1

.

Proof. Notice that Observations 1, 3, 5 in Proposition A directly hold true under this setup, and
Observation 4 is also true when 𝑎 is large enough. Following Proposition A and based on the fact
that 𝑑0 (𝑥𝑥𝑥) is now 𝐶1, we know that𝜓 ′ (𝑥𝑥𝑥) can be continuous but not differentiable only when the
closest object to 𝑥𝑥𝑥 changes. For all other query points,𝜓 ′ (𝑥𝑥𝑥) is 𝐶1 since𝜓𝑔 (𝑥𝑥𝑥) does not touch the
discontinuity and thus all components are 𝐶1. So, we only need to prove

𝜓 ′ (𝑥𝑥𝑥) = 𝜓 (𝑥𝑥𝑥) + (𝜓𝑔 (𝑥𝑥𝑥) −𝜓 (𝑚𝑚𝑚(𝑥𝑥𝑥))) (1 − 𝛼 (𝑥𝑥𝑥)),
is continuously differentiable, where we further assume𝑚𝑚𝑚(𝑥𝑥𝑥) is at least 𝐶1. Therefore, it suffices to
show that both 𝜕𝜓 ′ (𝑥𝑥𝑥 )

𝜕 𝑥
and 𝜕𝜓 ′ (𝑥𝑥𝑥 )

𝜕 𝑦
are continuous for all 𝑥𝑥𝑥 such that 𝑑𝑠1 (𝑥𝑥𝑥) = 𝑑𝑠2 (𝑥𝑥𝑥). In this proof,

we will show that 𝜕𝜓 ′ (𝑥𝑥𝑥 )
𝜕 𝑥

is continuous; the proof for differentiating 𝑦 is similar.
Now, we want to show Observation 2 in Proposition A is still true when 𝑑0 (𝑥) is calculated using
Algorithm 1.
Observation 2: For all 𝑥𝑥𝑥 located on the equidistant curve of the closest two obstacles, (i.e., when
𝑑 (𝑥𝑥𝑥) = 𝑑𝑠1 (𝑥𝑥𝑥) = 𝑑𝑠2 (𝑥𝑥𝑥)), we have 1 − 𝛼 (𝑥𝑥𝑥) = 0 and 𝜕 𝛼

𝜕 𝑥
(𝑥𝑥𝑥) = 𝜕 𝛼

𝜕 𝑦
(𝑥𝑥𝑥) = 0.

Proof of observation 2: From Section 4.2.1, we know that our differentiable 𝑑0 (𝑥𝑥𝑥) underestimates
𝑑𝑠2 (𝑥𝑥𝑥) and overestimates 𝑑 (𝑥𝑥𝑥) = 𝑑𝑠1 (𝑥𝑥𝑥). Since 𝑑𝑠1 (𝑥𝑥𝑥) ≤ 𝑑𝑠2 (𝑥𝑥𝑥), there are still three possible cases
regarding the ordering of 𝑑𝑠1 (𝑥𝑥𝑥), 𝑑𝑠2 (𝑥𝑥𝑥) and 𝑑0. We analyze them one by one.
Case 1:𝑑0 ≤ 𝑑𝑠1 (𝑥𝑥𝑥) ≤ 𝑑𝑠2 (𝑥𝑥𝑥). When𝑑𝑠1 (𝑥𝑥𝑥) = 𝑑𝑠2 (𝑥𝑥𝑥), we have𝑑0 ≤ 𝑑𝑠1 (𝑥𝑥𝑥) = 𝑑𝑠2 (𝑥𝑥𝑥). No matter which
one of 𝑑2 (𝑥𝑥𝑥) or 𝑑0 is smaller, we will always have 𝑑

1 (𝑥𝑥𝑥) ≥ 𝑑0 (𝑥𝑥𝑥) since 𝑑
1 (𝑥𝑥𝑥) ≥ 𝑑 (𝑥𝑥𝑥) = 𝑑𝑠1 (𝑥𝑥𝑥) =

𝑑𝑠2 (𝑥𝑥𝑥) ≥ 𝑑2 (𝑥𝑥𝑥) ≥ 𝑑0 (𝑥𝑥𝑥), and 𝑑0 ≥ 𝑑0 (𝑥𝑥𝑥) (LSE approximation of min{·} is an underestimator).

3
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Therefore 𝑑
1 (𝑥𝑥𝑥 )

𝑑0 (𝑥𝑥𝑥 ) ≥ 1.
Case 2: 𝑑𝑠1 (𝑥𝑥𝑥) ≤ 𝑑0 ≤ 𝑑𝑠2 (𝑥𝑥𝑥). When 𝑑𝑠1 (𝑥𝑥𝑥) = 𝑑𝑠2 (𝑥𝑥𝑥), we must have 𝑑𝑠1 (𝑥𝑥𝑥) = 𝑑0 = 𝑑𝑠2 (𝑥𝑥𝑥). It follows
that 𝑑

1 (𝑥𝑥𝑥) ≥ 𝑑 (𝑥𝑥𝑥) = 𝑑𝑠1 (𝑥𝑥𝑥) = 𝑑0 = 𝑑𝑠2 (𝑥𝑥𝑥) ≥ 𝑑2 (𝑥𝑥𝑥) ≥ 𝑑0 (𝑥𝑥𝑥), which implies 𝑑
1 (𝑥𝑥𝑥 )

𝑑0 (𝑥𝑥𝑥 ) ≥ 1.

Case 3: 𝑑𝑠1 (𝑥𝑥𝑥) ≤ 𝑑𝑠2 (𝑥𝑥𝑥) ≤ 𝑑0. When 𝑑𝑠1 (𝑥𝑥𝑥) = 𝑑𝑠2 (𝑥𝑥𝑥), we have 𝑑𝑠1 (𝑥𝑥𝑥) = 𝑑𝑠2 (𝑥𝑥𝑥) ≤ 𝑑0. Then 𝑑
1 (𝑥𝑥𝑥) ≥

𝑑 (𝑥𝑥𝑥) = 𝑑𝑠1 (𝑥𝑥𝑥) = 𝑑𝑠2 (𝑥𝑥𝑥) ≥ 𝑑2 (𝑥𝑥𝑥) ≥ 𝑑0 (𝑥𝑥𝑥). Hence, 𝑑
1 (𝑥𝑥𝑥 )

𝑑0 (𝑥𝑥𝑥 ) ≥ 1.

Notice that in all three cases, we showed that 𝑑
1 (𝑥𝑥𝑥 )

𝑑0 (𝑥𝑥𝑥 ) ≥ 1, given that 𝑑𝑠1 (𝑥𝑥𝑥) = 𝑑𝑠2 (𝑥𝑥𝑥). So,

𝛼 (𝑥𝑥𝑥) = 𝑟𝑎𝑚𝑝

(
𝑑
1 (𝑥𝑥𝑥)

𝑑0 (𝑥𝑥𝑥)

)
= 1 =⇒ 1 − 𝛼 (𝑥𝑥𝑥) = 0, and (7)

∇𝛼 (𝑥𝑥𝑥) = 𝑟𝑎𝑚𝑝′
(
𝑑
1 (𝑥𝑥𝑥)

𝑑0 (𝑥𝑥𝑥)

)
︸            ︷︷            ︸

=0

·∇
(
𝑑
1 (𝑥𝑥𝑥)

𝑑0 (𝑥𝑥𝑥)

)
= 0 =⇒ 𝜕 𝛼

𝜕 𝑥
=

𝜕 𝛼

𝜕𝑦
= 0 (8)

□
We make one last observation based on the discussion in Section 4.2.1.
Observation 6: ∀𝑥𝑥𝑥 ∈ D, ∇𝜓𝑔 (𝑥𝑥𝑥) (1 − 𝛼 (𝑥𝑥𝑥)) = 0.
Proof of Observation 6: In Section 4.2.1, we mentioned that the first order partial derivatives of
𝜓𝑔 (𝑥𝑥𝑥) are linear combinations of Dirac delta functions, where the nonzero values occur for 𝑥𝑥𝑥 on
the equidistant curves between the two closest objects to 𝑥𝑥𝑥 . So, if 𝑥𝑥𝑥 is not on any equidistant curve
causing a change of the closest object, then ∇𝜓𝑔 (𝑥𝑥𝑥) = 0. Otherwise, as we proved in Observation 2
that (1 − 𝛼 (𝑥𝑥𝑥)) = 0. Therefore, we will always have ∇𝜓𝑔 (𝑥𝑥𝑥) (1 − 𝛼 (𝑥𝑥𝑥)) = 0. □

Let 𝑥0𝑥0𝑥0 be any query point such that 𝑑𝑠1 (𝑥0𝑥0𝑥0) = 𝑑𝑠2 (𝑥0𝑥0𝑥0).
Here, based on the general form (Eq. 3), we write down the partial derivative of𝜓 ′ (𝑥𝑥𝑥) with respect
to 𝑥 .

𝜕𝜓 ′

𝜕 𝑥
(𝑥𝑥𝑥) = 𝜕𝜓

𝜕 𝑥
(𝑥𝑥𝑥) +

(
𝜕𝜓𝑔

𝜕 𝑥
(𝑥𝑥𝑥) + 𝜕𝜓 (𝑚𝑚𝑚(𝑥𝑥𝑥))

𝜕 𝑥

)
(1 − 𝛼 (𝑥𝑥𝑥)) − (𝜓𝑔 (𝑥𝑥𝑥) +𝜓 (𝑚𝑚𝑚(𝑥𝑥𝑥))) 𝜕 𝛼

𝜕 𝑥
(𝑥𝑥𝑥) (9)

When 𝑥𝑥𝑥 = 𝑥0𝑥0𝑥0, then Eq. 9 is

𝜕𝜓 ′

𝜕 𝑥
(𝑥0𝑥0𝑥0) =

𝜕𝜓

𝜕 𝑥
(𝑥0𝑥0𝑥0) +

(
𝜕𝜓𝑔

𝜕 𝑥
(𝑥0𝑥0𝑥0) +

𝜕𝜓 (𝑚𝑚𝑚(𝑥0𝑥0𝑥0))
𝜕 𝑥

)
(1 − 𝛼 (𝑥0𝑥0𝑥0)) − (𝜓𝑔 (𝑥0𝑥0𝑥0) +𝜓 (𝑚𝑚𝑚(𝑥0𝑥0𝑥0)))

𝜕 𝛼

𝜕 𝑥
(𝑥0𝑥0𝑥0)

=
𝜕𝜓

𝜕 𝑥
(𝑥0𝑥0𝑥0) By Observation 2, 1 − 𝛼 (𝑥0𝑥0𝑥0) = 0 and 𝜕 𝛼

𝜕 𝑥
(𝑥0𝑥0𝑥0) = 0. (10)

Take arbitrary 𝜖 > 0. Set 𝜖0 = 1
4𝜖 .

Since𝜓 (𝑥𝑥𝑥) ∈ 𝐶1, then ∀𝜖0 > 0, ∃𝛿1 > 0 such that

|𝑥𝑥𝑥 − 𝑥0𝑥0𝑥0 | < 𝛿1 =⇒ | 𝜕𝜓
𝜕 𝑥

(𝑥𝑥𝑥) − 𝜕𝜓

𝜕 𝑥
(𝑥0𝑥0𝑥0) | < 𝜖0. (11)

Since 𝛼 (𝑥𝑥𝑥) ∈ 𝐶1, then ∀𝜖0
𝑀

> 0, ∃𝛿2 > 0, where 𝑀 is the upper bound of 𝜓𝑔 (𝑥𝑥𝑥) in Observation 5,
such that

|𝑥𝑥𝑥 − 𝑥0𝑥0𝑥0 | < 𝛿2 =⇒
���� 𝜕 𝛼𝜕 𝑥 (𝑥𝑥𝑥) −

�
�

��>
0

𝜕 𝛼

𝜕 𝑥
(𝑥0𝑥0𝑥0)︸   ︷︷   ︸

by Observation 2

���� = ���� 𝜕 𝛼𝜕 𝑥 (𝑥𝑥𝑥)
���� < 𝜖0

𝑀
. (12)
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By assumption, as𝜓 (𝑥𝑥𝑥),𝑚𝑚𝑚(𝑥𝑥𝑥) ∈ 𝐶1, then 𝜕𝜓 (𝑚𝑚𝑚 (𝑥𝑥𝑥 ) )
𝜕 𝑥

(1 − 𝛼 (𝑥𝑥𝑥)) is continuous. Then ∀𝜖0 > 0, ∃𝛿3 > 0
such that

|𝑥𝑥𝑥 − 𝑥0𝑥0𝑥0 | < 𝛿3 =⇒
���� 𝜕𝜓 (𝑚𝑚𝑚(𝑥𝑥𝑥))

𝜕 𝑥
(1 − 𝛼 (𝑥𝑥𝑥)) − 𝜕𝜓 (𝑚𝑚𝑚(𝑥0𝑥0𝑥0))

𝜕 𝑥 �����:0
(1 − 𝛼 (𝑥0𝑥0𝑥0)︸      ︷︷      ︸

by Observation 2

����
=

���� 𝜕𝜓 (𝑚𝑚𝑚(𝑥𝑥𝑥))
𝜕 𝑥

(1 − 𝛼 (𝑥𝑥𝑥))
���� < 𝜖0. (13)

For a similar reason,𝜓 (𝑚𝑚𝑚(𝑥𝑥𝑥)) 𝜕 𝛼
𝜕 𝑥

(𝑥𝑥𝑥) is also continuous. So, ∀𝜖0 > 0, ∃𝛿4 > 0 such that

|𝑥𝑥𝑥 − 𝑥0𝑥0𝑥0 | < 𝛿3 =⇒
����𝜓 (𝑚𝑚𝑚(𝑥𝑥𝑥)) 𝜕 𝛼

𝜕 𝑥
(𝑥𝑥𝑥) −𝜓 (𝑚𝑚𝑚(𝑥0𝑥0𝑥0))

�
�
��>

0
𝜕 𝛼

𝜕 𝑥
(𝑥0𝑥0𝑥0)︸   ︷︷   ︸

by Observation 2

����
=

����𝜓 (𝑚𝑚𝑚(𝑥𝑥𝑥)) 𝜕 𝛼
𝜕 𝑥

(𝑥𝑥𝑥)
���� < 𝜖0. (14)

Take 𝛿 = min{𝛿1, 𝛿2, 𝛿3, 𝛿4}, and assume |𝑥𝑥𝑥 − 𝑥0𝑥0𝑥0 | < 𝛿 , then���� 𝜕𝜓 ′

𝜕 𝑥
(𝑥𝑥𝑥) − 𝜕𝜓 ′

𝜕 𝑥
(𝑥0𝑥0𝑥0)

����
=

���� 𝜕𝜓𝜕 𝑥 (𝑥𝑥𝑥) +
(
𝜕𝜓𝑔 (𝑥𝑥𝑥)
𝜕 𝑥

+ 𝜕𝜓 (𝑚𝑚𝑚(𝑥𝑥𝑥))
𝜕 𝑥

)
(1 − 𝛼 (𝑥𝑥𝑥)) − (𝜓𝑔 (𝑥𝑥𝑥) +𝜓 (𝑚𝑚𝑚(𝑥𝑥𝑥))) 𝜕 𝛼

𝜕 𝑥
(𝑥𝑥𝑥) − 𝜕𝜓

𝜕 𝑥
(𝑥0𝑥0𝑥0)

����
Sub in Eq. 9 and Eq. 10

≤
���� 𝜕𝜓𝜕 𝑥 (𝑥𝑥𝑥) − 𝜕𝜓

𝜕 𝑥
(𝑥0𝑥0𝑥0)

���� +���������:0���� 𝜕𝜓𝑔 (𝑥𝑥𝑥)
𝜕 𝑥

(1 − 𝛼 (𝑥𝑥𝑥))
����︸                   ︷︷                   ︸

by Observation 6

+
���� 𝜕𝜓 (𝑚𝑚𝑚(𝑥𝑥𝑥))

𝜕 𝑥
(1 − 𝛼 (𝑥𝑥𝑥))

����+
����(𝜓𝑔 (𝑥𝑥𝑥) +𝜓 (𝑚𝑚𝑚(𝑥𝑥𝑥))) 𝜕 𝛼

𝜕 𝑥
(𝑥𝑥𝑥)

����
≤
���� 𝜕𝜓𝜕 𝑥 (𝑥𝑥𝑥) − 𝜕𝜓

𝜕 𝑥
(𝑥0𝑥0𝑥0)

���� + ���� 𝜕𝜓 (𝑚𝑚𝑚(𝑥𝑥𝑥))
𝜕 𝑥

(1 − 𝛼 (𝑥𝑥𝑥))
���� + |𝜓𝑔 (𝑥𝑥𝑥) |

���� 𝜕 𝛼𝜕 𝑥 (𝑥𝑥𝑥)
���� + ����𝜓 (𝑚𝑚𝑚(𝑥𝑥𝑥)) 𝜕 𝛼

𝜕 𝑥
(𝑥𝑥𝑥)

����
≤ 𝜖0 + 𝜖0 +𝑀

𝜖0
𝑀

+ 𝜖0 By Eq. 11, 12, 13, 14 and Observation 5

= 4𝜖0 = 𝜖.

Hence, we showed that 𝜕𝜓 ′

𝜕 𝑥
is continuous even when the closest object to 𝑥𝑥𝑥 changes. A similar

conclusion can be drawn for 𝜕𝜓 ′

𝜕 𝑦
. Therefore, we know that𝜓 ′ (𝑥𝑥𝑥) ∈ 𝐶1 for all 𝑥𝑥𝑥 such that 𝑑𝑠1 (𝑥𝑥𝑥) =

𝑑𝑠2 (𝑥𝑥𝑥). As for all other query points,𝜓 ′ (𝑥𝑥𝑥) is already 𝐶1, we conclude that𝜓 ′ (𝑥𝑥𝑥) ∈ 𝐶1,∀𝑥𝑥𝑥 ∈ D.

3 EXTEND TO 3D: A RAY MARCHING ALGORITHM
Claim: Take arbitrary 𝑖 ∈ [𝑛]. Consider the 𝑖𝑡ℎ object, 𝑂𝑖 , defined in the domain of interest D. Let
𝐹𝑖 be the set of primitives composing 𝑂𝑖 . If 𝜕2 𝑤ℓ

𝜕 𝜙2
ℓ

= 0,∀ℓ ∈ 𝐹𝑖 , then ∇𝑑 (𝑥) ∈ 𝐶1.
Proof. We need ∇𝑑 (𝑥𝑥𝑥) to be differentiable if we want the updating step of the Ray Marching
algorithm to be differentiable. However, the design of weight function by Madan and Levin [2022]
only guarantees ∇𝑑𝑖 (𝑥𝑥𝑥) ∈ 𝐶0, and thus ∇𝑑 (𝑥𝑥𝑥) ∈ 𝐶0 (by the construction of our Equation 7 in
the paper). Hence, the key step is to design a continuously differentiable ∇𝑑𝑖 (𝑥𝑥𝑥). To make sure
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∇𝑑𝑖 (𝑥𝑥𝑥) ∈ 𝐶1, we need to confine the second order behaviour of 𝑤ℓ (𝑥𝑥𝑥). We first reiterate the
expression for ∇𝑑𝑖 (𝑥𝑥𝑥) in our notation (Equation 4 in Madan and Levin [2022]):

∇𝑑𝑖 (𝑥𝑥𝑥) =
∑

𝑓ℓ ∈𝐹𝑖 𝑤ℓ (𝑥𝑥𝑥) exp(−𝑎𝑑∗ℓ )∇𝑑∗ℓ − 1
𝑎
exp(−𝑎𝑑∗ℓ )∇𝑤ℓ (𝑥𝑥𝑥)∑

𝑓ℓ ∈𝐹𝑖 𝑤ℓ (𝑥𝑥𝑥) exp(−𝑎𝑑∗ℓ )
.

Following the nature of the SC Exterior Mapping, we are only querying the points in the domainD
that is also in the exterior of the objects. Then, ∇𝑑∗ℓ ∈ 𝐶1 holds for all such query points. Therefore,
taking a closer look at the expression for ∇𝑑𝑖 (𝑥𝑥𝑥), we realized that each component of ∇𝑑𝑖 (𝑥𝑥𝑥) is
already 𝐶1, except for ∇𝑤ℓ (𝑥𝑥𝑥). Let us write down ∇2𝑤ℓ (𝑥𝑥𝑥) explicitly:

∇2𝑤ℓ (𝑥𝑥𝑥) =
𝜕

𝜕𝑥𝑥𝑥

(
𝜕 𝜋ℓ

𝜕𝑥𝑥𝑥

𝜕 𝜙ℓ

𝜕 𝜋ℓ

𝜕𝑤ℓ

𝜕 𝜙ℓ

)
=

𝜕

𝜕𝑥𝑥𝑥

(
𝜕 𝜋ℓ

𝜕𝑥𝑥𝑥

)
𝜕 𝜙ℓ

𝜕 𝜋ℓ

𝜕𝑤ℓ

𝜕 𝜙ℓ
+ 𝜕

𝜕𝑥𝑥𝑥

(
𝜕 𝜙ℓ

𝜕 𝜋ℓ

)
𝜕 𝜋ℓ

𝜕𝑥𝑥𝑥

𝜕𝑤ℓ

𝜕 𝜙ℓ
+ 𝜕

𝜕𝑥𝑥𝑥

(
𝜕𝑤ℓ

𝜕 𝜙ℓ

)
𝜕 𝜋ℓ

𝜕𝑥𝑥𝑥

𝜕 𝜙ℓ

𝜕 𝜋ℓ

=
𝜕

𝜕𝑥𝑥𝑥

(
𝜕𝑤ℓ

𝜕 𝜙ℓ

)
𝜕 𝜋ℓ

𝜕𝑥𝑥𝑥

𝜕 𝜙ℓ

𝜕 𝜋ℓ
(since 𝜕𝑤ℓ

𝜕 𝜙ℓ
= 0 by Madan and Levin [2022])

=
𝜕2𝑤ℓ

𝜕 𝜙2
ℓ

(
𝜕 𝜋ℓ

𝜕𝑥𝑥𝑥

𝜕 𝜙ℓ

𝜕 𝜋ℓ

)2
.

Set 𝜕2 𝑤ℓ

𝜕 𝜙2
ℓ

= 0 so that the continuity of ∇2𝑤ℓ is not spoiled by the discontinuity of 𝜕 𝜋ℓ
𝜕𝑥𝑥𝑥

. Tracing back,
we have ∇𝑑𝑖 (𝑥𝑥𝑥) ∈ 𝐶1 and eventually ∇𝑑 (𝑥𝑥𝑥) ∈ 𝐶1 as desired.
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